

Note:

Java Enum internally inherits the Enum class, so it cannot inherit any other class,

but it can implement many interfaces. We can have fields, constructors,

methods, and main methods in Java enum.

Points to remember for Java Enum

- Enum improves type safety

- Enum can be easily used in switch

- Enum can be traversed

- Enum can have fields, constructors and methods

Examples:

Simple Example of Java Enum

class EnumExample1{

public enum Season { WINTER,

SPRING, SUMMER, FALL }

public static void main(String[] args)

{

//traversing the enum

for (Season s : Season.values())

System.out.println(s);

}}

class EnumExample1{

public enum Season { WINTER, SPRING, SUMMER,

FALL }

public static void main(String[] args) {

for (Season s : Season.values()){

System.out.println(s);

}

System.out.println("Value of WINTER is:

"+Season.valueOf("WINTER"));

System.out.println("Index of WINTER is:

"+Season.valueOf("WINTER").ordinal());

System.out.println("Index of SUMMER is:

"+Season.valueOf("SUMMER").ordinal());

}

}

Output

WINTER

SPRING

SUMMER

FALL

Output

WINTER

SPRING

SUMMER

FALL

Value of WINTER is: WINTER

Index of WINTER is: 0

Index of SUMMER is: 2

Note: Java compiler internally adds values(), valueOf() and ordinal() methods

within the enum at compile time. It internally creates a static and final class for

the enum.

- What is the purpose of the values() method in the enum?

A: The values () method returns an array containing all the values of the enum.

-What is the purpose of the valueOf() method in the enum?

A: The valueOf() method returns the value of given constant enum.

-What is the purpose of the ordinal() method in the enum?

A: The ordinal () method returns the index of the enum value.

Defining Java Enum

Note : The enum can be defined within or outside the class because it is similar to

a class.

Initializing specific values to the enum constants

The enum constants have an initial value which starts from 0, 1, 2, 3, and so on.

But, we can initialize the specific value to the enum constants by defining fields

and constructors. As specified earlier, Enum can have fields, constructors, and

methods.

class EnumExample4{

enum Season{

WINTER(5), SPRING(10), SUMMER(15), FALL(20);

private int value;

private Season(int value){

this.value=value;

}

}

public static void main(String args[]){

for (Season s : Season.values())

System.out.println(s+" "+s.value);

 }

Output

WINTER 5

SPRING 10

SUMMER 15

FALL 20

}

Note : constructor of enum type is private. If you don't declare private

compiler internally creates private constructor.

enum Season{

WINTER(10),SUMMER(20);

private int value;

Season(int value){

this.value=value;

}

}

Can we create the instance of Enum by new keyword?

A:No, because it contains private constructors only.

Can we have an abstract method in the Enum?

A:Yes, Of course! we can have abstract methods and can provide the

implementation of these methods.

enum Size {

 // enum constants calling the enum constructors

 SMALL("The size is small."),

 MEDIUM("The size is medium."),

 LARGE("The size is large."),

 EXTRALARGE("The size is extra large.");

private final String pizzaSize;

 // private enum constructor

 private Size(String pizzaSize) {

 this.pizzaSize = pizzaSize;

 }

 public String getSize() {

 return pizzaSize;

 }

}

class Main {

 public static void main(String[] args) {

 Size size = Size.SMALL;

 System.out.println(size.getSize());

 }

}

Polymorphism

The word polymorphism means having many forms. In simple words, we can

define polymorphism as the ability of a message to be displayed in more than

one form.

What is Polymorphism?

The term polymorphism means that an object can exist in different crystalline

forms. For example, carbon can exist in three common types. Coal, graphite, and

diamond are the three different crystalline forms of carbon.

Similarly, in Java, Polymorphism is a phenomenon of an object that can exhibit a

property of performing mathematical and logical operations from different

perspectives.

Real-life Illustration: Polymorphism

A person at the same time can have different characteristics. Like a man at the

same time is a father, a husband, an employee. So the same person possesses

different behavior in different situations. This is called polymorphism.

- Polymorphism is considered one of the important features of Object-

Oriented Programming.

Output

The size is small.

https://www.simplilearn.com/tutorials/java-tutorial

- Polymorphism allows us to perform a single action in different ways. In

other words, polymorphism allows you to define one interface and have

multiple implementations.

- The word “poly” means many and “morphs” means forms, So it means

many forms.

Why Polymorphism?

To reducing complexity,

Java example

Where the polymorphism can only be achieved through the behavior (methods),

the method "println()", single name many form. It is an example of

polymorphism.

- println(10);

- println("HelloJava");

- println(23.4);

Hence you can see only one method name to print all the different values instead of

having different functions to print the values of different data types.

Run-time polymorphism comes in three different forms:

1. use up casting, this the most common use of polymorphism in OOP.

2. run-time polymorphism with abstract base classes

3. Run-time polymorphism with interfaces.

Example:

class one{

void print(){

System.out.println("In class one");}

}

class two extends one{

void print(){

System.out.println("In class two");}

public static void main(String args[]){

one a = new two(); //upcasting
Out put

In class two

a.print(); }

}

Types of polymorphism

In Java polymorphism is mainly divided into two types:

- Compile-time Polymorphism

- Runtime Polymorphism

Type 1: Compile-time polymorphism

It is also known as static polymorphism. This type of polymorphism is achieved

by function overloading.

Method Overloading: When there are multiple functions with the same name but

different parameters then these functions are said to be overloaded. Functions can

be overloaded by change in the number of arguments or/and a change in the type of

arguments.

Example 1:

class Helper {

 static int Multiply(int a, int b)

 {

 return a * b;

 }

 static double Multiply(double a, double b)

 {

 return a * b;

 }

}

Class test {

 public static void main(String[] args)

 {

 System.out.println(Helper.Multiply(2, 4));

 System.out.println(Helper.Multiply(5.5, 6.3));

Output:

8

34.65

 }

}

Example 2:

class Helper {

 static int Multiply(int a, int b)

 {

 return a * b;

 }

 static int Multiply(int a, int b, int c)

 {

 return a * b * c;

 }

}

class Test {

 public static void main(String[] args)

 {

 System.out.println(Helper.Multiply(2, 4));

 System.out.println(Helper.Multiply(2, 7, 3));

 }

}

Type 2: Runtime polymorphism

It is also known as Dynamic Method Dispatch. It is a process in which a function

call to the overridden method is resolved at Runtime. This type of polymorphism

is achieved by Method Overriding. Method overriding, on the other hand, occurs

when a derived class has a definition for one of the member functions of the base

class. That base function is said to be overridden.

Output:

8

42

Example

class Parent {

 void Print()

 {

 System.out.println("parent class");

 }

}

class subclass1 extends Parent {

 void Print() { System.out.println("subclass1"); }

}

class subclass2 extends Parent {

 void Print()

 {

 System.out.println("subclass2");

 }

}

class Test {

 public static void main(String[] args)

 {

 Parent a;

 a = new subclass1();

 a.Print();

 a = new subclass2();

 a.Print();

 }

}

Output:

subclass1

subclass2

Output explanation:

Here in this program, when an object of child class is created, then the method

inside the child class is called. This is because the method in the parent class is

overridden by the child class. Since the method is overridden, this method has

more priority than the parent method inside the child class. So, the body inside the

child class is executed.

Example:

Public abstract class Shape {

 public abstract void shapeForm();

}

public class Square extends Shape {

 @Override

 public void shapeForm() {

 System.out.println("* * * *\n* * * *\n* * * *\n");

 }

}

public class Rectangle extends Shape {

 @Override

 public void shapeForm() {

 System.out.println("* * * * * *\n* * * * * *\n* * * * * *\n");

 }

}

public class Triangle extends Shape {

 @Override

 public void shapeForm() {

 System.out.println(" *\n * *\n * * *\n * * * *\n* * * * *\n");

 }

 }

public class Circle extends Shape {

 @Override

 public void shapeForm() {

 System.out.println(" * * *\n* * * * *\n* * * * *\n * * *\n");

 }

 }

public class Drawer {

 public void draw(Shape s) {

 s.shapeForm();

 }

}

public class Main {

 public static void main(String[] args) {

 Shape s = new Square();

 Shape r = new Rectangle();

 Shape t = new Triangle();

 Shape c = new Circle();

 Drawer drawer = new Drawer();

 drawer.draw(s);

Output

* * * *

* * * *

* * * *

* * * * * *

* * * * * *

* * * * * *

*

* *

* * *

* * * *

* * * * *

* * *

* * * * *

* * * * *

* * *

 drawer.draw(r);

 drawer.draw(t);

 drawer.draw(c);

 }

 }

